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Abstract—The Great Outdoors (GO) dataset is a multi-modal
annotated data resource aimed at advancing ground robotics
research in unstructured environments. This dataset provides
the most comprehensive set of data modalities and annotations
compared to existing off-road datasets. In total, the GO dataset
includes six unique sensor types with high-quality semantic
annotations and GPS traces to support tasks such as semantic
segmentation, object detection, and SLAM. The diverse envi-
ronmental conditions represented in the dataset present signifi-
cant real-world challenges that provide opportunities to develop
more robust solutions to support the continued advancement of
field robotics, autonomous exploration, and perception systems
in natural environments. The dataset can be downloaded at:
https://www.unmannedlab.org/the-great-outdoors-dataset/

Index Terms—Off-road Robotics, Radar, Navigation, Semantic
Segmentation

I. INTRODUCTION

Research efforts supporting autonomous ground robot op-
eration in unstructured environments are experiencing rapid
growth, driven by the increasing demand for autonomous
systems capable of navigating and perceiving complex terrains.
Applications in agriculture, search and rescue, and environ-
mental monitoring are fueling this expansion. The use of tra-
ditional ground robotics solutions that have primarily focused
on urban operation, with well-defined roads, infrastructure, and
structured cues, will be insufficient for the off-road domain.
Unlike structured urban environments, natural terrains present
unique challenges, including unpredictable obstacles (e.g.,
fallen trees, rocks, and wildlife), varying surface types (e.g.,
mud, sand, gravel, and vegetation), dense vegetation that
obstructs visibility and hinders movement, uneven topography
(e.g., steep slopes, cliffs, and ditches), and degraded sensor
data (e.g., blurry images or missing LiDAR hits) stemming
from the characteristics and complexity of the off-road en-
vironment. To achieve effective perception, localization, and
planning in such environments, robots require diverse sensory
inputs and comprehensive training data. This necessitates the
curation of datasets that accurately represent the complexity
of these natural settings.

The emergence of several multi-modal datasets to train and
evaluate perception systems in off-road robotics supports the
notion that diverse sensor inputs are critical to addressing the
complex and variable nature of unstructured terrains. Early
efforts such as RELLIS-3D [1] include LiDAR and RGB data,
providing essential depth and visual information for off-road
robotics. It also provides semantic annotations for LiDAR
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Fig. 1. The GO dataset comprises five routes, covering a cumulative distance
of 10.26 km and a total duration of 98.60 minutes.

and camera data, focusing on unstructured environments,
particularly rural and natural settings. The GOOSE dataset [2]
and its extension GOOSE-Ex dataset [3] offers multi-platform
data, including visual and LiDAR sensors, for semantic seg-
mentation in challenging off-road conditions. TartanDrive 2.0
[4] is an enhanced version of the original TartanDrive [5],
incorporating an expanded sensor suite that includes multiple
LiDAR units alongside cameras and inertial sensors. It covers
diverse off-road terrains, providing a comprehensive dataset
for self-supervised learning in off-road conditions.

A shortcoming of the previously mentioned datasets is
that exteroceptive sensors like LiDAR and RGB cameras
are highly susceptible to interference from large particles
like dust, rain, and snow due to their limited wavelength
detection range (RGB camera: 400-700 nm; LiDAR: 750 nm
to 1.5 µm). Thus, these sensors can be unreliable in degraded
conditions such as low light, moonlight, darkness, dust (1-
400 µm wavelength), smoke (0.1-2.5 µm), fog (10-50 µm),
snow, and rain (2 mm). To better address operation in degraded
conditions, sensors such as radar and NIR cameras have been
explored in the off-road domain. OORD [6] provides radar0000–0000/00$00.00 © 2021 IEEE
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TABLE I
COMPARISON OF SEVERAL EXISTING OFF-ROAD MULTI-MODAL

DATASETS

Dataset Camera Stereo LIDAR NIR Radar IMU GPS Labels
RELLIS-3D [1] • • • ◦ ◦ • • •

TartanDrive 2.0 [4] • • • • ◦ • • ◦
OORD [6] • ◦ ◦ ◦ • • • ◦

GOOSE-Ex [3] • • • • ◦ • • •
FOMO [7] • • • ◦ • • • ◦

TAS-NIR [8] • ◦ ◦ • ◦ ◦ ◦ •
GO • • • • • • • •

data for place recognition in rugged, off-road environments,
contributing significantly to radar research in unstructured
settings. The FoMo dataset [7] provides LiDAR and radar data
for navigation in boreal forests, emphasizing sensor fusion
in complex natural environments. The TAS-NIR dataset [8]
consists of paired visible and near-infrared (VIS+NIR) images,
with fine-grained semantic segmentation of vegetation and
ground surfaces in unstructured outdoor environments. For
a comprehensive overview of existing off-road datasets, we
refer the reader to the survey by Mortimer and Maehlisch
[9], which highlights key limitations in these data. While
many multi-modal off-road data resources are available, there
is still a lack of data that encompass a comprehensive set
of all previously mentioned sensing modalities that are well
calibrated and accompanied by ground truth annotations for
evaluation (see Table I).

To address the limitations of existing datasets and fill
the gap in comprehensive multi-modal data for unstructured
environments, we introduce the Great Outdoors (GO) dataset.
This dataset provides a rich collection of sensor data and
dense ground truth annotations for five long-distance, off-road
routes that depict varying terrain and challenging unstructured
conditions. Figure 1 shows an overhead view of these routes.
In summary, the GO dataset offers several key contributions:

• Comprehensive Sensor Suite: Integrates a wide range of
modalities, including monocular, stereo, and thermal im-
agery, LiDAR, radar, and inertial measurements, enabling
sensor fusion research to support robust perception, lo-
calization, and planning in diverse conditions.

• Inclusion of Thermal and Radar Data: Enhances per-
ception capabilities in degraded environmental conditions
such as low light, dust, or smoke, where traditional
sensors like cameras and LiDAR may be unreliable.

• High-Quality Semantic Annotations: Provides detailed
semantic annotations for images, supporting tasks like
semantic segmentation, object detection, and SLAM, cru-
cial for scene understanding and navigation in unstruc-
tured terrains.

• Precise Trajectory Ground Truth: Includes centimeter-
precision route traces derived from RTK GPS, which are
valuable for the development and assessment of SLAM
and odometry estimation algorithms.

• Diverse Terrain Coverage: Captures a variety of natural
environments, including forests, rocky trails, open fields,
and bodies of water, ensuring the dataset’s applicability
to a wide range of real-world off-road scenarios.

(a) Stereo-Left Camera (b) Stereo-Right Camera

(c) Rear Camera (e) Thermal Camera

(e)Lidar data (white) and Threshold filtered Radar data (color)
Fig. 2. Example of the raw perception sensor data from the GO Dataset. The
figure shows (a) the left stereo camera view, (b) the right stereo camera view,
(c) the rear camera view, (d) thermal camera imagery, and (e) a combined
representation of LiDAR (white) and threshold-filtered radar data (color)

II. DATASET DESCRIPTIONS

A. Sensor Setup

We used a Clearpath Warthog mobile robot as our platform
to gather data. The onboard sensor suite includes:

• 1 × Ouster OS1 LiDAR: 64 Channels, 2048 horizontal
resolution, 10 Hz, 45◦ vertical field of view;

• 1 × RGB Camera: FLIR Blackfly S, Rear-mounted,
running at 30 Hz;

• 1 × Stereo Camera: FLIR Blackfly S, Front-facing stereo
configuration, 30 Hz;

• 1 × Thermal Camera: FLIR Boson 640, operating at 60
Hz;

• 1 × Inertial Navigation System (IMU/GPS): MicroStrain
3DM-GX5-AHRS, provides 200 Hz IMU data;

• 2D mmWave Radar: The Navtech CTS350-X functions
at 4 Hz, offering 360◦ azimuth coverage with a 0.9◦

sampling interval, and has a range capacity of 270 meters
along with 400 input rotations per cycle

• RTK GPS: The Sparkfun RTK Facet provides a maximum
accuracy of 1.4 cm and operates at a frequency of 4 Hz.

B. Sensor Calibration and Synchronization

To ensure accurate sensor synchronization across the com-
puter and sensor network, we utilize Precision Time Protocol
(PTP) for radar, LiDAR, and monocular and stereo cameras.
A high-precision clock serves as the authoritative time source
that synchronizes sensors and computers via PTP. The thermal
camera and GNSS/IMU rely on ROS timestamps for synchro-
nization.
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Fig. 3. Qualitative visualization of the LiDAR-Camera calibration.

TABLE II
DETAILS OF THE FIVE ROUTES OF THE GO DATASET

Route t(min) d(km) vmax(m/s) vavg(m/s) Environment
0 3.43 0.58 4.00 2.91 paved area
1 13.02 2.35 3.98 3.15 trails
2 33.40 1.82 3.18 0.98 trails, forest
3 17.90 2.79 4.06 2.80 trails, forest
4 30.85 2.72 3.96 1.59 trails, forest

For calibration, we employ the MSG-Cal method [10], using
a planar board to align the LiDAR and RGB/Thermal camera
sensors, as shown in Fig. 3. The radar’s transformation with
respect to other sensors is calibrated using a 3D model to align
the radar data with the 3D scanned point cloud accurately.

C. Route Information

Data acquisition was conducted over a two-day period in
May at the DEVCOM Army Research Laboratory’s Robotics
Research Collaboration Campus (R2C2). The dataset com-
prises a teleoperated collection of five distinct routes (as seen
in Fig. 1), collectively spanning 10.26 km of unstructured
terrain with a combined total operation time of 98.60 minutes.
A summary of the time, distance, velocity, and environment
type for each route is presented in Table II. The driving
environment is broadly categorized into two types: Forest Area
and Trails, which can be seen in Fig. 4 (a) and (b), respectively.

• Route 0 serves as a test route where the robot travels at
high speed in a minimally featured paved area, covering
0.58 km in 3.43 minutes, with a peak speed of 4.00 m/s.

• Route 1 features a loop on a gravel roadway, spanning
2.35 km in 13.02 minutes and an average speed of 3.15
m/s.

• Route 2 is the most intricate route among the five,
integrating both gravel trails and forest regions, resulting
in an average speed of just 0.98 m/s due to difficult
terrain.

• Route 3 was recorded on a trail with multiple instances
of the robot deviating into off-road areas before returning
to the main path, achieving an average speed of 2.80 m/s.

• Route 4 followed the same trail as Route 3 but on a
different day, and deviated into different off-road areas,
resulting in an average speed of 1.59 m/s.

(a) Forest Area (b) Trail
Fig. 4. Example images and semantic segmentation labels from the GO
Dataset. The figure shows (a) a forest area and (b) a trail, along with their
respective semantic segmentation results.

D. Semantic Annotations:

1) Ontology: The GO dataset provides detailed pixel-wise
semantic annotations (see Fig. 4) to support enhanced au-
tonomous off-road navigation. By integrating the ontological
frameworks of the RELLIS-3D dataset [1] alongside the
RUGD dataset [11], we constructed a comprehensive ontology
of terrain and object categories tailored for our GO dataset.
In total, the dataset includes 22 distinct classes, covering
categories including trees, grass, dirt, sky, gravel, bush, mulch,
water, poles, fences, persons, buildings, objects, vehicles,
barriers, mud, concrete, puddles, rubble, asphalt, and a void
class.

2) Annotation process: The annotation process was semi-
automated: we selected keyframes and used the Segment
Anything Model (SAM) [12] and OffSeg model [13] to
provide initial segmentation labels. These initial labels were
then refined by human annotators who manually assigned
semantic labels, adjusted boundaries, and corrected errors. We
also provide labels to thermal image data by utilizing the
calibration between RGB camera and thermal cameras.

3) Class Distribution: The semantic class distribution for
the GO dataset can be seen in Fig. 5 and reveals that
vegetation-related classes, such as trees and grass, are highly
represented, while man-made structures like fences, vehicle,
and building are less frequent. This imbalance highlights the
dataset’s emphasis on natural terrains, making it well-suited
for off-road robotics, but also presents challenges for training
balanced perception models across all classes.

III. RESEARCH DIRECTIONS AND OPEN QUESTIONS

The GO dataset can be used in the following research areas:
• Robust Localization: The dataset provides accurate GPS

ground truth trajectories synchronized with LiDAR, vi-
sual, radar, and NIR sensor data. This enables the de-
velopment and evaluation of robust odometry, SLAM,
and place recognition algorithms, particularly those lever-
aging novel modalities like radar and NIR or exploring
advanced sensor fusion techniques for improved accuracy
in off-road environments.
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Fig. 5. Image Label distribution. The tree, grass, dirt and sky constitute the
major classes.

• Advanced Perception: High-quality semantic annota-
tions facilitate the development and evaluation of per-
ception models for tasks such as semantic segmentation,
object detection, and terrain classification. This rich la-
beled data enables the development of autonomous sys-
tems capable of robustly understanding and interpreting
complex outdoor scenes.

• Reliable Navigation: The dataset includes diverse routes
with loops, varying speeds, and challenging terrains,
providing a realistic testbed for evaluating and improving
vision-based navigation models like ViNT [14]. The
multi-modal data enables these models to learn robust
features and generalize effectively to complex off-road
environments.

While the GO dataset offers a valuable resource for off-road
robotics research, it also presents several challenges and open
questions that warrant further investigation:

• Generalization to Unseen Environments: How well do
models trained on the GO dataset generalize to new and
unseen off-road environments with different terrain types,
vegetation, weather conditions, and object distributions?

• Effective Multi-modal Fusion: How can data from
different sensor modalities (e.g., LiDAR, visual, radar,
thermal, etc.) be effectively fused to achieve robust and
accurate perception, localization, and navigation in chal-
lenging off-road settings?

• Robustness to Degraded Features: How can algorithms
be made robust to degraded or missing sensor data
caused by factors like dust, fog, rain, snow, or low-light
conditions common in off-road environments?

• Developing Standardized Evaluation Metrics: What
are the most appropriate metrics for evaluating the per-
formance of different algorithms on the GO dataset,
considering the specific challenges and requirements of
off-road robotics tasks?

IV. CONCLUSION

This paper introduces the Great Outdoors (GO) dataset, a
comprehensive resource designed to advance robotics research
in unstructured environments. The GO dataset features a
diverse range of sensor modalities, detailed semantic anno-
tations and GPS traces, and challenging off-road scenarios.
The novel characteristics of the GO dataset allows it to
serve as a catalyst for developing more capable and adaptable
autonomous systems for a variety of real-world applications in

challenging outdoor settings. Future datasets aim to increase
diversity across seasons, weather, and times of day, while
simultaneously traversing more complex terrains beyond off-
road trail.
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